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Abstract - Point Coordination Function (PCF) of the IEEE
802.11 protocol providing a centrally-controlled polling-based
multiple access to a wireless channel is very efficient in high
load conditions. However, its performance degrades with in-
creasing the number of terminals and decreasing the load,
because of wastes related to unsuccessful polling attempts.
To solve the problem, we propose and study analytically the
generic adaptive polling policy using backoff concept. For
this aim, we develop Markov models describing the network
queues changes, what allows us to estimate such performance
measures as the average MAC service time and the average
MAC sojourn time, to show the efficiency of the adaptive
polling policy and to tune optimally the backoff rule.
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I. INTRODUCTION

IEEE 802.11 [1] being one of the most popular protocol for
wireless and mobile networking offers two different MAC
mechanisms. The basic mechanism called the Distributed
Coordination Function (DCF) is based on the CSMA/CA
scheme and allows for independent and distributed channel
access. The optional PCF is a centrally-controlled access
scheme, according to which terminals can transmit only af-
ter receipt of prompt (a polling frame) from the point coor-
dinator being usually the Access Point (AP) of the network.
The DCF works well under low load conditions, but its per-
formance degrades essentially with increasing the number
of terminals and load. Waste of bandwidth caused by col-
lisions and increasing backoff times becomes very high in
the presence of hidden terminals.
The PCF allows avoiding the problems, since it operates on
the contention-free base, and therefore achieving a much
high maximum throughput than the contention-based DCF
[2-5]. Usually, the AP polls terminals in the Round-Robin
way. In fact, the PCF represents a TDMA scheme, where
the network operation time is subdivided into polling cycles
consisting of time-variable slots (Fig. 1). Slot i is desig-
nated for a frame exchange between the AP and the ith ter-
minal. In contrary to a terminal controlling the only queue
of packets, the AP managesN AP’s Queues (APQs), where
N is the number of polled terminals, and APQ j contains
packets to be transmitted to terminal j. We call the APQ j
and the jth Terminal’s Queue (TQ j) the opposite queues.
Both the APQ and TQ size are assumed unlimited in the
paper.
At the beginning of the jth slot, the AP sends a polling

Fig. 1. PCF operation scheme

frame being either a CF-DATA frame (if APQ j is not
empty) or a short CF-POLL frame containing no data. If
the AP received a data packet in the previous slot, it ac-
knowledges the receipt by setting the appropriate bit to one
in the polling frame MAC header. Upon the correct polling
frame receipt, the terminal replies with a data frame or null
frame (if TQ j is empty) containing no payload together
with possible setting the acknowledgment bit to one, after
a short interval δ. Having received the frame, the AP waits
for δ and starts polling the next terminal. (This standard
polling policy has been studied in [6].)
However, with a large number of terminals and low-rate
traffic, there is essential waste of bandwidth caused by un-
successful polling attempts not replied by data transfers [2,
4]. This is the reason why the conventional PCF can be
less efficient than the DCF under normal load conditions
and has not been widely used up to the present.
Our paper focuses on decreasing this waste. The previous
attempt to solve the problem can be found in [2], where
the implicit signaling scheme was proposed, according to
which a terminal indicates (setting the bit added specially
to the MAC header to one) that its queue is not empty.
However, this approach, firstly, leads to loss of compati-
bility with original 802.11 devices, and secondly, relies on
the DCF with solving the problem of resuming the terminal
polling.
In our paper, we will solve the problem only by the PCF
means. Specifically, we are going to adopt, develop, and
study the polling backoff policy suggested for the Blue-
tooth networks in [7]. According to this adaptive policy
(Fig. 2), a terminal is necessarily polled only if its back-



off counter k is equal to the backoff window Wi speci-
fied for each backoff stage i = 0, 1, . . . , I . At the null
stage, k = W0 =1 and the terminal is polled every cycle.
When the AP receives a null frame from the terminal, it un-
derstands that the terminal’s queue is empty and sets i=1.
During the next Wi-1 cycles (1 < Wi ≤ Wi+1 for all
0 < i < I−1), the AP will poll the terminal only if the ap-
propriate APQ is not empty. (Otherwise, slots designated
to the terminal will be null, that is, skipped, and the AP
only increments k by 1 for a cycle.) Upon receipt of a data
packet from the terminal, the AP returns it to the null stage.
When k = Wi, the AP polls necessarily the terminal and,
in case of a null reply, it increments i by 1 (if i < I) and
sets k = 1. The particular form of this backoff policy (with
Wi = 2i) was proposed in [7] for the Bluetooth networks.
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Fig. 2. Adaptive backoff-based polling strategy

In the next section II, we develop Markov models describ-
ing the changes of the 802.11 PCF network queues in the
case of ideal channel and the generic backoff policy. To
consider both the rate and burstiness of incoming traffic, we
choose a Batch Poisson flow of packets as a load for each
queue, a number of packets in a batch being geometrically
distributed. [That is, a batch contains h packets with proba-
bility (1− q)qh−1, where q−1 is the average batch size.] In
section III, using the models, we estimate the average MAC
service time and the average MAC sojourn time for each
queue, which are main performance measures in normal
load conditions. Specifically, we define the average MAC
service time as the mean time between either the acknowl-
edgment receipts for consecutive packets of the queue (if
the packet arrives to non-empty queue), or instances of the
packet arrival and acknowledgment. Both of estimated per-
formance measures are of great importance for transport
layer protocols, such as TCP. In section IV, we adopt the
developed analytical method to compare different polling
policies and to choose the optimal backoff rule. In the last
section, we give a brief conclusion.

II. MODEL DESCRIPTION

We study the IEEE 802.11 PCF network consisting of the
AP and N terminals. The batch arrival rate, the mean
packet transmission time (including MAC and PHY head-
ers), and the mean batch size characterizing the traffic

burstiness are equal to Λd, Td, and q−1
d , respectively, for

an APQ and to Λu, Tu, and q−1
u for a TQ.

Let `dj(t) and vj(t)=[ij(t), kj(t), `uj(t)] be the stochas-
tic processes representing the states of a APQ j and TQ
j at time t. The APQ state is described only by the APQ
length `dj measured in batches, while the TQ state de-
scription (with adaptive polling) includes also the backoff
stage number ij = 0 . . . I and the backoff counter value
kj = 1 . . .Wi. (With the standard polling, the TQ state is
described only by `uj .) πd(`) and πu(i, k, `) are stationary
probabilities of these states.
For both processes, we adopt a discrete time scale with a
cycle as the time unit. For `dj(t), each t corresponds to
the beginning of the slot intended for the jth terminal, in-
cluding the null slot case. For vj(t), each t corresponds to
the end of either the terminal polling (if the slot is not null)
or the previous terminal’s slot. We assume that all `dj(t)
and vj(t) are independent. However, in fact, vj(t) depends
on `dj(t), since a conditionally polled terminal can trans-
mit only if the opposite APQ is not empty. We will try
to consider the dependence by choosing appropriately the
transition probabilities for vj(t). With modeling, we will
adopt the following
Main Assumption. For any queue, we neglect the proba-
bility that more than one batch arrive to the queue during a
cycle.
The assumption allows us simplifying the model form and
using average transmission times instead of their distribu-
tion with calculating the transition probabilities. Moreover,
with the assumption, `uj ≤ kj if ij > 0.

A. Access Point Queue model

Obviously, `dj(t) is a birth-and-death process, where a
“birth” happens when the current batch service is not com-
pleted and new batch arrives. That is, the “birth” probabil-
ity is λ0

d = 1−exp{−Λd(T
∗

c +T d
sl(0))} (for `d = 0), while

for `d > 0 we have

λd = (1 − qd)[1 − exp{−Λd(T
∗

c + T d
sl(`d))}], (1)

where T d
sl(`d) is the average jth slot time that depends on

`d, and T ∗

c is the average time of other N − 1 slots. For
`d = 0, the jth slot is not null under condition A that
the terminal is necessarily polled in the current cycle. So
T d

sl(0) = T d0
sl = νp[t0+2δ+(1−ρp

u)t0+ρ
p
uTu], where t0 is

the transmission time of CF-POLL or NULL frames, ρp
u is

the probability of non-empty opposite TQ under condition
A, and νp is the condition probability, that is:

νp = 1 −

I
∑

i=1

Wi−1
∑

k=1

k
∑

`=0

πu(i, k, `),

ρp
u = 1 − ν−1

p

I
∑

i=0

πu(i,Wi, 0).



(νp = 1 and ρp
u = ρu with the standard polling.)

With `d > 1, TQ j can not be in such states vj(t)=[ij(t) >
0, kj(t), `uj(t)] that `uj(t − 1) > 0, since the terminal
would be polled in the previous cycle, otherwise. (Let X
be the set of these states.) So

T d
sl(`d > 1) = T d1

sl = Td + 2δ+ (1− ρ1
u)t0 + ρ1

uTu, (2)

where ρ1
u the probability of non-empty opposite TQ un-

der condition vj /∈ X . At last, for `d(t) = 1 the jth

slot time depends on `d(t − 1): OT j can be in any state
if `d(t − 1) = 0, while vj /∈ X should be hold with
`d(t− 1) > 0. Therefore, T d

sl(1) = T d∗
sl is also determined

by (2) with substitution of ρ∗u (that will be obtained further)
for ρ1

u. Thus, λd(1) = λ∗d and λd(`d > 1) = λd, where
right parts of these equations are defined, substituting T d∗

sl

and T d1
sl into (1). At last,

T ∗

c = (N−1){πd(0)T d0
sl +πd(1)T d∗

sl +[1−πd(0)−πd(1)]T d1
sl }.

A “death” happens with the current batch service comple-
tion and the absence of new batch arrival for a given cycle,
so its probability is µ∗

d = qd exp{−Λd(T
∗

c + T d∗
sl )} with

`d = 1 or µd = qd exp{−Λd(T
∗

c + T d1
sl )} with `d > 1.

Thus, we find the stationary probabilities: πd(0) = G−1
d ,

πd(1) = G−1
d

λ0
d

µ∗

d

, πd(` > 1) = G−1
d

λ0
d

µ∗

d

λ∗d
µd

(

λd

µd

)`−2

,

(3)
where the normalizing constant

Gd = 1 +
λ0

d

µ∗

d

[

1 +
λ∗d

µd − λd

]

(4)

and ρd = 1 − πd(0) is the probability of non-empty APQ.
Obviously, λd should be less than µd. Now we can find ρ∗u.
Since the probability that the APQ whose length is one was
empty in the previous cycle is equal to

λ0
dπd(0)/{λ0

dπd(0)+[1−λ∗d−µ
∗

d]πd(1)+µdπd(2)} = µ∗

d,

then ρ∗u = µ∗

dρu + (1 − µ∗

d)ρ
1
u, where ρu = 1 −

∑I
i=0

∑Wi

k=1 πu(i, k, 0) is the absolute probability of non-
empty opposite TQ, while ρ1

u will be determined with TQ
model analysis.

B. Terminal Queue model

With the standard polling, `uj(t) is also a birth-and-death
process, which stationary probabilities are also defined by
(3) and (4), where we substitute λ0 for λ0

d, λ for λd and
λ∗d, and µ for µd and µ∗

d, which are, in turn, defined by
the same formulae, using Λu and qu instead of Λd and qd,
T u1

sl = Tu +δ+ tp(ρd) instead of T d1
sl and T d∗

sl , and T u0
sl =

0,1,0 0,1,1 0,1,2 0,1,3 0,1,4
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Fig. 3. Beginning of Markov chain for a TQ with W1 = 2 and
W2 = 4

t0+δ+tp(ρd) instead of T d0
sl . [Here tp(ρd) = (1−ρd)t0+

ρdTd + δ is the average polling time.]
With an adaptive polling, the process vj(t) can be con-
sidered as a Markov chain, which example is shown in
Fig. 3. [Transitions returning the terminal to the null stage
are shown only for states (1,2,2) and (2,3,3).] Let us define
non-null one-step transition probabilities. In fact, all these
transitions can be attributed to one of the following generic
transitions:

• Backoff counter increment (for k < Wi) or transi-
tion to the next stage (for k = Wi and ` = 0) without
(γ-transitions) and with (ψ-transitions) increasing the TQ
length. These transition probabilities are:

Γ(θ, η1) = (1 − θ) exp{−Λu(T ∗

c + η1)} and

Ψ(θ, η1) = 1 − θ − Γ(θ, η1) for ` > 0,

while

Γ0(θ, η0) = exp{−Λu[T ∗

c + η0 + θ(t0 + δ)]} and

Ψ0(θ, η0) = 1 − Γ0(θ, η0) for ` = 0,

where θ and η (with various indices) are the polling proba-
bility and the conditional average value of the next polling
time, respectively. (After γ- and ψ-transitions from (I ,WI ,
0), the TQ appears in (I ,1,0) and (I ,1,1), respectively.)

• For states with ` > 0: transitions to a null-stage state
with increasing, decreasing, and without changing the TQ
length (α-, φ-, and β-transitions). Their probabilities are:

A(θ, η2) = θ(1− qu)[1− exp{−Λu(T ∗

c + η2 +Tu + δ)}],

Φ(θ, η2) = θqu exp{−Λu(T ∗

c + η2 + Tu + δ)},



B(θ, η2) = θ − A(θ, η2) − Φ(θ, η2).

Concrete values of θ and η are given in Tab. 1. With
considering states (i,k >1,1) (bold ellipses in Fig. 3), we
find that the polling probability θ to be determined for such
state depends on the way of reaching the state. If the TQ
passed to the state from (i,k-1,0), then θ = ρd , since the
APQ could be in any state before the transition; otherwise,
θ = ω = 1−exp{−ΛdT

∗

c } since the APQ was empty a cy-
cle ago. To take into account of this peculiarity and to save
Markov property, we have to split each of these states into
two sub-states: (i,k,10) and (i,k,11) reached from (i,k-1,0)
and (i,k-1,1), respectively. [The state (i,1,1) consists only
of (i,k,10).]
Now we can determine the probability ρ1

u that the opposite
TQ is not empty under condition vj /∈ X :

ρ1
u = 1 −

I
∑

i=0

Wi
∑

k=1

πu(i, k, 0)/

/

{

1 −

I
∑

i=1

Wi
∑

k=2

[

πu(i, k, 11) +

k
∑

`=2

πu(i, k, l)

]}

.

TABLE I
VALUES OF θ AND η.

i, k, ` θ η0 η1 η2
0, 1, ` > 1 1 - - tp(ρd)

i, k < Wi − 1, 0 ρd tp0(ξ1) - -
i,Wi − 1, 0 ρd tp(ξ1) - -
i,Wi, 0 1 tp(ρd) - -
i, k < Wi − 1, ` > 1 ω - tp0(ω) tp(ξ2)
i,Wi − 1, ` > 1 ω - tp(ω) tp(ξ2)
i,Wi, ` > 1 1 - - tp(ξ∗2 )
i, k < Wi − 1, 10 ρd - tp0(ω) tp(ξ∗1 )
i, k < Wi − 1, 11 ω - tp0(ω) tp(ξ2)
i,Wi − 1, 10 ρd - tp(ω) tp(ξ∗1 )
i,Wi − 1, 11 ω - tp(ω) tp(ξ2)
i,Wi, 10 1 - - tp(ρd)

i,Wi, 11 1 - - tp(ξ∗2 )

In Tab. 1, tp0(ω) = ω(Td + δ), and probabilities ξ (with
various indices) that the opposite APQ will not be empty
before the next polling are:

ξ1 = ρd

[

1 −
qdπd(1)

ρd

exp{−Λd(T
∗

c + Td + 2δ + t0)}

]

+(1 − ρd)ω,

ξ∗1 = 1 −
qdπd(1)

ρd

exp{−Λd(T
∗

c + Td + 2δ + Tu)},

ξ2 = 1 − qd exp{−Λd(T
∗

c + Td + Tu + 2δ)},

ξ∗2 = 1 − exp{−Λd(2T
∗

c + t0 + Tu + 2δ)} − ω(1 − ξ2).

Now we can determine stationary probabilities πu(i, k, `).
These probabilities are found in turn, using global balance
equations written, firstly, for states of non-null stages and
then for (0, 1, `) with ` = 0, . . . ,WI . Since the paper size
is limited, we have to omit final equations for πu(i, k, `)
and only mention that, for states (0,1,` > WI + 1),

πu(0, 1, `) = πu(0, 1,WI + 1)(λ/µ)`−WI−1

and the sum of the stationary probabilities is

S∞ =

∞
∑

`=WI+1

πu(0, 1, `) = πu(0, 1,WI +1)/

(

1 −
λ

µ

)

.

Obviously, λ should be less than µ.
In fact, calculation of stationary probabilities is an iterative
process: using some initial values of T d0

sl , T d∗
sl , and T d1

sl ,
we calculate transition and stationary probabilities, firstly,
for the APQ model, and secondly, for the TQ model. At
last, we find modified values of T d

sl(`) and use half sums of
the modified and initial values as new initial ones. We stop
calculations when absolute differences of consecutive val-
ues T d

sl(`) become less than a pre-defined small threshold.

III. ESTIMATION OF PERFORMANCE MEASURES

In the section, we estimate firstly the average MAC service
time. Let us start with packets Transmitted after Queue-
ing (TaQ packets). This is the case when either the packet
is not the first in the batch, or the batch that the packet
belongs to arrives to non-empty queue. Another packet
category consists of packets Transmitted without Queueing
(TwQ packets). Obviously, the average TaQ packet MAC
service time is equal toDd

TaQ = T ∗

c +T d1
sl for an APQ and

Du
TaQ = T ∗

c + T u1
sl for a TQ.

Now let us consider TwQ packets. For an APQ, using the
Main Assumption, we find that the average TwQ packet
MAC service time is Dd

TwQ = (T ∗

c + T d0
sl )/2 + T d1

sl . The
average numbers of all packets and TwQ packets arriving
to a given APQ for a cycle are equal to nd = ΛdTc and
nd

2 = Λdqd(1 − ρd)(T
∗

c + T d0
sl ), where

Tc = T ∗

c +(1−ρd)

[

T d0
sl +

λ0
d

µ∗

d

T d∗
sl

]

+

[

ρd −
(1 − ρd)λ

0
d

µ∗

d

]

T d1
sl



is the average cycle duration. Therefore, a packet is a TwQ
one with probability

κd
TwQ = nd

Twq/n
d = qd(1 − ρd)(T

∗

c + T d0
sl )/Tc, (5)

and the sought average MAC service time for an APQ is

Md = (1 − κd
TwQ)Dd

TaQ + κd
TwQD

d
TwQ. (6)

For a TQ, the average MAC service time is defined by the
similar formula: Mu = (1− κu

TwQ)Du
TaQ +κu

TwQD
u
TwQ,

where we need to find the TwQ probability κu
TwQ and the

average TwQ packet MAC service time Du
TwQ. We can

write them in the form:

κu
TwQ =

quκ
u
0

Tc

, Du
TwQ =

1

κu
0

I
∑

i=0

Wi
∑

k=1

sik0Dikπu(i, k, 0),

where

κu
0 =

I
∑

i=0

Wi
∑

k=1

sik0πu(i, k, 0).

Here sik` and Dik are the average duration of cycle (i, k, `),
at the beginning of which the TQ is in state (i, k, `), and the
average service time for a TwQ packet arriving for the cycle
(i, k, 0), respectively. Let us find sikl and Dik:

sik` = T ∗

c +1(` > 0)[θik`(Tu +δ+ηik`
2 )+(1−θik`)η

ik`
1 ]

+1(` = 0)[θik`(t0 + δ) + ηik`
0 ],

where θik`, ηik`
0 , ηik`

1 , and ηik`
2 are defined accord-

ingly to Tab. 1; 1(condition) is the Boolean operator equal
to one if the condition holds; and

Dik =
sik0

2
+ Tu + δ + tACK + (1 − ρd)∆ik,

where ∆ik = FD(Wi − k) with k < Wi, ∆i,Wi
=

FD(Wi+1) with i < I, and ∆I,WI
= FD(WI );

FD(W ) = 1(W > 2)ω

W−3
∑

j=0

[(j + 1)T ∗

c + Td + δ](1−ω)j

+1(W > 1)(1 − ω)W−2[(W − 1)T ∗

c + tp(ξ1)],

tACK is the average time of acknowledgment receipt that
happens (in most cases) during polling the next terminal
whose slot is not null. So

tACK = [ρdTd + (1 − ρd)νpt0]/[ρd + (1 − ρd)νp].

Now let us estimate the average packet sojourn time for
both APQ and TQ (TMAC

d and TMAC
u ). Obviously, these

measures can be found via the Little’s formula: TMAC
d =

qdLd/Λd and TMAC
u = quLu/Λu, so the main problem

is to estimate the average lengths measured in packets of
an APQ (Ld) and a TQ (Lu). For an APQ, we have Ld =
Sd

L/Tc, where

Sd
L =

∑

`

¯̀
d(`)t

d
c(`)πd(`),

l̄d(l) =
l

qd
+

Λd

2qd
[T ∗

c +T d
sl(l)]−1(l > 0)

[

1 −
T d

sl(l) − δ

T ∗

c + T d
sl(l)

]

,

and tdc(`) = T ∗

c + T d
sl(`). Therefore,

Sd
L = πd(0)

Λd

2qd
(T ∗

c + T d0
sl )2+

+πd(1)

{

T ∗

c + T d∗
sl

qd

[

1 − qd +
Λd

2
(T ∗

c + T d∗
sl )

]

+ T d∗
sl − δ

}

+

+
πd(2)Dd

TwQ

qd(1 − λd/µd)

(

l1d + 1 +
1

1 − λd/µd

)

,

where l1d = Λu

2 D
d
TwQ−qd

[

1 −
T d1

sl −δ

Dd
TwQ

]

. For a TQ, we use

the similar equation: Lu = Su
L/Tc, where

Su
L =

∑

(i,k,`)

¯̀
u(i, k, `)sik`πu(i, k, `),

l̄u(i, k, l) =
l

qu
+

Λu

2qu
sikl

−1(l > 0)θikl

[

1 −
Tu + δ + tACK

T ∗

c + Tu + δ + ηikl
2

]

.

At last, we obtain after simple transformations:

Lu = (q−1
u Du

TwQκ
∗

1 + κ∗0)/Tc,

where

κ∗1 =

WI
∑

`=1

(`+ `1u)πu(0, 1, `) + (`1u +WI)S∞+



+πu(0, 1,WI + 1)/

(

1 −
λ

µ

)2

,

`1u =
Λu

2
Du

TwQ − qu

(

1−
Tu + δ + tACK

Du
TwQ

)

,

κ∗0 = s010
Λu

2qu
πu(0, 1, 0)+

∑

(i,k,l):i>0

l̄u(i, k, l)siklπu(i, k, l).

IV. NUMERICAL RESULTS

Let us adopt the developed analytical method to evaluate
the PCF performance, depending on parameters of traffic
and network configuration, and to compare the Standard
Polling (SP), the Binary Scheme (BS) with I = 8 and
Wi = 2i, and the Optimal Polling (OP). The OP form is
determined, using the analytical method to find the opti-
mal set (I,Wi) providing the minimal valueMu or TMAC

u

for each point of space (N,Λd,Λu, qd, qu, Td, Tu). Thus,
the OP scheme requires following the change of uplink and
downlink traffic parameters and correcting on-line the set
(I,Wi).
The main fraction of traffic transmitted through a wire-
less network is related to TCP/IP protocol stack operation,
when arrival rates of uplink and downlink packets are ap-
proximately the same, since each TCP packet (which mean
length is assumed to be 576 bytes that corresponds to multi-
hop connections) is followed by a TCP acknowledgement
(we assume its length to be equal to 80 bytes). Therefore,
we consider the case Λd = Λu = Λ and qd = qu = q
in the numerical research. Moreover, we use the follow-
ing probability distribution of packet length m: m = 576
and m = 80 bytes with probabilities 0.7 and 0.3 for the
AP and with probabilities 0.3 and 0.7 for a terminal, what
approximately corresponds to the case, when a third of
TCP connections carries out downlink traffic. Thus, bas-
ing on this discussion and IEEE 802.11b specifications, we
adopt the following parameter values with our numerical
research: 11-Mbps channel rate, δ = 10 µs, t0 = 217 µs,
Td = 528 µs, and Tu = 383 µs.
In Fig. 4, we show how the average service time Mu de-
pends on the load, that is, on Λ, for differentN and polling
policies. The OP form has been determined for I = 1 with
varyingW1 from 2 to Wmax = 256, and the found optimal
values W1 = W opt

1 versus Λ are shown in Fig. 5 by solid
curves. Here and further in the numerical research, we deal
only with one-stage optimal policies, since it appears that
increasing the number I of backoff stages does not allow
improving the network performance.
Let us look at curves in Fig. 4. We see that both dynamic
polling schemes are much better than the SP with non-
saturated queues: the mean service time for the BS and
OP is more than ten times less than the one for the SP with
low load. Comparing to the BS, the OP decreases Mu in
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two-three times with moderate load. However, with low
load, it is not essential which of dynamic polling schemes
is adopted, since each terminal spends most of time at the
stage with window Wmax.
In Fig. 6 we show how the traffic burstiness characterized
by q affects the mean service time. Here each curve has
been obtained with constant value Λ/q equal to incoming
packet rate for each queue. As Fig. 4, Fig. 6 shows that
a dynamic polling is always better than the standard one,
while the OP improves essentially the Mu value, compar-
ing with the BS, for moderate values of q and Λ/q. With
large Λ/q, the difference between the BS and OP perfor-
mance is much less (within 10 %). Moreover, it appears
(see also Fig. 4) that, in contrary to a dynamic policy, with
the SP the mean service time only slightly depends on both
Λ and q, and their ratio.
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Fig. 7 shows the mean sojourn time TMAC
u being another

performance measure versus load. Here OP curves have
been obtained with minimizing TMAC

u , but not Mu, and
the corresponding optimal windows W opt

1 are shown in
Fig. 5 by dotted curves. As one can expected, the rela-
tion between TMAC

u values for three polling schemes un-
der consideration is nearly the same as the relation of the
correspondingMu.
Sum TMAC

u + TMAC
d is very important performance in-

dex for networks with TCP traffic, because just this sum
is equal to the average sojourn time of TCP segment rep-
resented firstly by a TCP packet and then by its TCP
acknowledgment in the wireless network MAC queues.
This time can be a determining component of such impor-
tant TCP protocol parameter as Round Trip Time. Con-
sidering similar behavior of dependencies TMAC

u (Λ) and
TMAC

d (Λ) (see Figs. 4 and 6), it is easy to predict the form
of curves TMAC

u +TMAC
d vs. Λ given at Fig. 7 forN = 10

and N = 20. To obtain the OP curve in the figure, we have
used the optimizing Wopt curve shown by the dashed line
in Fig. 5.
As a concluded result, we would like to point out that the
optimization criterion choice is not essential. Specifically,
it appears that the relative difference inMu values obtained
for the OP with W opt

1 minimizingMu and TMAC
u does not

exceed 5%.



V. CONCLUSION

To improve IEEE 802.11 PCF performance under normal
load, we propose and study a generic adaptive policy for
polling terminals, depending on observed traffic parame-
ters. The proposed policy is based on concepts of polling
backoff and polling stage and allows minimizing the per-
formance wastes related to unsuccessful polling attempts.
Describing the network queues changes by discrete-time
Markov chains, we have developed an analytical method
to estimate the average service time and the average so-
journ time for each network queue. Accordingly to exten-
sive numerical results, the developed method is very ef-
ficient with comparing different polling schemes as well
as for choosing and optimizing the dynamic polling policy
form, depending on parameters of traffic and network con-
figuration. We believe that the proposed adaptive polling
policy and its modelling method should be useful also for
other centrally-controlled wireless protocols, such as IEEE
802.15 and 802.16.
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